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$ Raman Research Institute, Bangalore 560080, India 
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Abstract. We consider some aspects of accretion onto a rotating black hole immersed in 
a uniform magnetic field aligned with the angular momentum axis of the black hole. We 
specialise to motion in the equatorial plane, and calculate the ‘Keplerian’ angular momen- 
tum distribution and the marginally stable orbits. Using an unorthodox definition of the 
binding energy made necessary by an unphysical infinity induced by the assumed constancy 
of the magnetic field, we can calculate the marginally bound orbits and the efficiency of 
mass-to-energy conversion. When hydrodynamic accretion is considered the effects of 
the magnetic field are invariably quite small. For test particles, the magnetic field can 
significantly increase the efficiency, but this increase lessens as the specific angular momen- 
tum of the black hole rises. 

1. Introduction 

Accretion discs around supermassive black holes provide popular models for the 
engines of quasars and other active galactic nuclei (for a review see Wiita 1982b). 
Over the past few years a class of thick accretion disc models has been developed 
which can produce high luminosities and collimated beams of radiation and plasma 
(Lynden-Bell 1978, Paczynski and Wiita 1980, Jaroszynski et af 1980, Abramowicz 
and Piran 1980, Sikora and Wilson 1981, Nityananda and Narayan 1982). These 
models may be of great interest considering how frequently jets are being discovered 
in quasars and the central regions of radiogalaxies (e.g. Kellerman and Pauliny-Toth 
1981). 

Although the inner edges of accretion discs are normally taken to lie at the 
innermost stable circular orbit, rms ( = 3 r ,  = 6m, for a Schwarzschild black hole of 
mass m, in units where G = c = l ) ,  in these thick disc models the inner edge can 
approach the marginally bound orbit, rmb (=2r, for the Schwarzschild case) as a 
non-Keplerian angular momentum distribution can be set up (Abramowicz et a1 1978). 
Magnetic fields will certainly be present in the material being accreted by the black 
hole (Bisnovatyi-Kogan 1979) but until the recent work of Dadhich and Wiita (1982, 
to be referred to as DW) on the Schwarzschild case little attention had been paid to 
the questions of how magnetic fields affect the values of rmb and rms. They used the 
Ernst (1976) metric to model a black hole in a uniform magnetic field and the effective 
potential derived by Dadhich et a1 (1979) to show that if the flow is basically 
hydrodynamical, the efficiency of mass-to-energy conversion cannot be significantly 
changed, as Tms is not altered very much. In this case rmb is not reduced very much 
either, so that the opening angle of the funnels cannot be made significantly smaller 
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and the collimation of ejected material is not greatly improved. On the other hand, 
DW showed that test particles (with a large chargelmass ratio) can have their rest 
masses converted to energy with an efficiency approaching unity, as both rms and rmb 
become arbitrarily close to rg in this static geometry. 

In this paper we shall consider the more general case of a rotating black hole 
immersed in a uniform magnetic field of strength B, and we shall assume that IBm I << 1 
so that the mass-energy of the field is small compared with that of the Kerr black 
hole. Prasanna and Vishveshwara (1978, to be referred to as PV) analysed trajectories 
of charged particles in equatorial orbits around Kerr black holes surrounded by both 
uniform and dipole magnetic fields. We will use the PV effective potential to solve 
numerically for the ‘Keplerian’ angular momentum distribution, rms, rmb and the 
efficiency at rms. The complexity of the results precluded the generation of analytic 
approximations similar to those found in DW. We refer the reader to Prasanna (1980) 
and DW for a discussion of the few papers which touch on related problems. 

2. Keplerian angular momentum distribution 

The Kerr metric in Boyer-Lindquist coordinates can be written as 

ds2 = -( 1 - 2mrZ-’) dt2 - 4mraZ-’ sin2 8 dt dq + ZA-’ d r 2  + Z de2 + FZ-’ sin2 8 d q 2  
(1) 

where a is the angular momentum parameter, Z = r 2  + a 2  cos2 8, A = r 2  + a 2  - 2mr and 
F = ( r 2 + a 2 ) 2 - A a 2  sin2 8. Wald (1974) has found the vector potential for the elec- 
tromagnetic field for a stationary, axisymmetric black hole placed in an originally 
uniform magnetic field of strength B aligned along the black hole’s symmetry axis. 
We follow PV in using this result in the case of a pure Kerr (no electrostatic charge) 
black hole: 

A ,  = -aB[1 -mrX-’(2 -sin2 O ) ]  

A ,  =iB sin28 Z - ’ [ ( r 2 + a 2 ) 2 - A a 2  sin2@ -4ma2r] .  

Since both the gravitational and electromagnetic fields are axisymmetric and stationary 
there exist two Killing vectors, such that for the motion of a particle of charge e and 
rest mass p,  there are two constants of motion. These are the canonical angular 
momentum and the energy, which are respectively given by 

U, + e A ,  = L ,  U, + eA,  = -E, (3) 

where all quantities are normalised by division by p,  and U, and U, are connected 
to components of the particle’s proper velocity U’. 

After introducing dimensionless quantities 

P = r/m,  u = s / m ,  I = L / m ,  

a = a / m ,  T = t / m ,  A, = A J m ,  
( 4 )  

the radial velocity is found to be (PV, equation (23) )  

(U”)2=  (dpldg)’= ~ - ~ { [ p ( p ’  + a 2 )  + 2 a 2 ] ( E  +A,) ’  

-4a(E + A , ) ( [ - A , ) - ( p  -2)(Z -A,)’--pA} 
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where we have restricted ourselves to considering motion confined to the equatorial 
plane, so that 6 = v/2,  dO/da = 0. This restriction is reasonable in that the minimum 
values for rmb and rms.,  and thus the determinants of the efficiency of a disc, are in 
the equatorial plane. In terms of the parameter 

A =eBm (6) 

the potentials of (2) that appear in ( 5 )  take the form 

A ,  = -,ia(i -p-'), A, = ;A [ p2  + '(1 - 2p-')]. (7) 

The effective potential for radial motion is found by solving for the turning points of 
the orbits. Setting U p  = 0 in ( 5 )  yields the effective potential 

V = A ~ ( I - ~ - ' ) + K / R  (8) 
where 

K = (2a ( I  -A,) +A112[p2(1 -A,)' + P R ] ~ / ~ } ,  

R = ( p 3 + a 2 p  +2a2) ,  A = p  - 2 p + a ,  2 2 (9) 

The locations of the maxima and minima for this effective potential, as well as possible 
test particle orbits for fixed A, a and I ,  are discussed in PV. 

We now seek the angular momentum distribution characterised by a balance 
between rotational, gravitational and electromagnetic forces (but neglecting radiation 
losses) that is the analogy to circular Keplerian orbits in the Newtonian case. This 
function, IK(p), is found by setting dV/dp = 0. After a significant amount of algebra 
we find that 

(10) d V/dp V' = TI+ T2( l 2  -XI + Y)'" + T31-t T4(? - WI + Z ) (  I - X1+ Y)- l l2  

where the coefficients of I are functions solely of p, with a and A taken as parameters. 
Explicit forms for these coefficients are 

X=Ap-'(R -4a2) ,  

W=Ap-'[2R -a2(p+5)] ,  

y='  4p -2 [A '(R - 4a + 4pR], 

z=' 4p -1 {A2(R -4a2)S+4[2R - a 2 ( p  +3)]}, 

s = 3 p 2 + a 2 ,  Ti =2aA(pR)-*[R(R -2a2)-2aZpS] (11) 

TZ = PR-~A-'/'[R ( p  - 1) - AS], 

Setting V' = 0, we convert (10) into an explicit quartic equation for 1 :  

14[(7'2+T4)2-7'?j] 

T3 = -2aSR-', T~ = A ~ / ~ R  - l a  

+ 1 3 [  T:X - 2T1 T3 - 2( T2 + T4)( T2X + T4 W)] 

+ I '[ (T2X + T4 W)' + 2( T2 + T4)( T2 Y + T Z )  - (Ti  Y + T:  - 2 Ti T3X)I 

+ I [  T:X - 2T1T3 Y - 2( TZX + T4 W)(Tz Y + TZ)] 
+ [(TzY + T Z ) ' -  T : Y ] =  0. (12) 

Equation (12) must be solved numerically, and the real positive root corresponding 
toeachvalueofp > p +  (theevent horizon,p+= 1+(1-a2)' /2) ischosenaslK(p;a,A).  
As we are able to express the auxiliary function K in terms of 1, 

K=ap- '[2pl-A(R -4a2)]+pA 1 / 2  ( I  2 -Xl+Y)1/2  
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we can then substitute back into (8) to solve for V (  p ; IK ( p ) ) .  Because we are interested 
in cases with small rmb  and rms and high efficiency, we only consider co-rotating particles 
or discs; i.e. Za z 0 (Bardeen 1970). 

The binding energy (per unit mass) is typically defined as 

b = l i m  V - V = V , - V  
P - ,  

1 2 2 1/2  However, in our case we find that for large p, V ( p )  =ah +(1 - I A  +zA p ) so that 
V ,  = 00, and this definition is indeterminate. It is obvious on physical grounds that 
V,  diverges as we have assumed a constant magnetic field filling all space, so that 
even in the absence of a central mass one garners an indeterminately large energy at 
infinity. However, this divergence is really an artifact of that unphysical assumption, 
in that any realistic magnetic field must decrease at large radii (DW) rapidly enough 
to remove any singularity. Therefore we shall henceforth neglect this effectively 
arbitrary contribution to the potential and choose the definition of binding energy 
that holds in the absence of a magnetic field, -E, or in our units, the binding energy 
per unit mass is 

b = l - V .  (13) 

(Note that the same argument must be made with respect to the work of DW if it is 
to retain its validity.) With this definition P m b  is found as the first radius for which 
V = 1 as V decreases while p increases above p+.  The marginally stable orbit is the 
one where dlK/dr = 0 (its location is independent of the choice of definition of b ) .  
Both of these points are found numerically by following the approach of DW. 

3. Plausible parameter ranges 

Before discussing the values obtained for the efficiency, last stable orbit, and last 
bound orbit as functions of the parameters a and A ,  we must discuss the likely ranges 
for these parameters. As far as the angular momentum of the black hole is concerned, 
we are naturally interested in all values from a = 0 (Schwarzschild case) through a = 1 
(extreme Kerr case). Although numerical problems preclude solving equation (1 2) 

0.999 999 99; as discussed below, the agreement of these near limiting cases with the 
actual extremes is excellent. 

The parameter A couples the strength of the magnetic field, Bm, with the charge 
(per mass) of the accreting material, e .  Let us first consider the magnetic field. The 
conversion between the dimensionless variable Bm and physical units for the magnetic 
field is 

(14) 

for both of those limiting cases, we were able to obtain useful results for lop4. < a s  

BG = ( c ~ / G ~ / ~ M ) B ~  = 2-36 x 10'9(M,/M)(Bm) G ,  

where M is the mass of the black hole in grams. A plausible constraint on Bm comes 
from the demand that the pressure due to the magnetic field does not exceed the sum 
of the gas and radiation pressures in a fluid disc. As shown in DW, the models of 
Wiita (1982a) can be used to find reasonable upper limits to the total pressure, and 
therefore, the magnetic field. The limit they obtain is (Bml < lov4. Unfortunately, 
Wiita's models assume a Schwarzschild black hole and no equivalent calculations have 
been performed for Kerr black holes. However, the evidence available (Jaroszynski 
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et a1 1980, Sikora 1981) indicates that the physical parameters in a disc around a 
rotating black hole will not differ very much from those around a non-rotating one, 
so we feel that the above limit is a reasonable one, especially in view of the fact that 
it was based on the most extreme models. In most circumstances we expect an even 
weaker field to exist in the vicinity of the hole (Bm s for a supermassive black 
hole of 10’ Mo this would correspond to -lo5 G. 

The value of the charge to be expected is quite uncertain. As discussed in DW, 
we anticipate that a plasma disc will be subject to forces that produce some charge 
separation and thus an effective charge in the innermost region. However, expressed 
as a charge per unit mass in geometrical units (our e )  this value should be relatively 
small, probably of O(1) or less. In any event, the product of charge with magnetic 
field ( A )  should be significantly less than unity for fluid accretion. On the other hand, 
in the test particle approximation, very high values of e are possible (for an isolated 
proton, e = 1.112 x and we must allow for the possibility that A is much greater 
than one, the situation considered by PV. 

4. Numerical results 

Before exploring uncharted regions of the (a,  A )  parameter space, we compared our 
results with those of previous calculations. As mentioned above, numerical difficulties 
in the root finding algorithm prevented us from performing the calculations for a = 0 
or a = 1. However, results were obtained for values of a as low as and these 
could then be compared with the Schwarzschild results of DW, although a difference 
in definition means that our A corresponds to one-half of their product eBm. The 
differences in the locations of rmb, r,, and the value of b ( r m S )  were found to differ by 
~ 0 . 2 %  from those of DW for the equivalent A value. Part of this discrepancy is due 
to the non-zero a we employed and part is due to our use of a perturbation around 
the Kerr metric while they used the Ernst metric. 

Comparisons were also made with Thorne’s (1974) results for accretion onto Kerr 
black holes without electromagnetic fields. When we set A = O  in our computations 
we find exact agreement with Thorne’s results for the values of rms and b(r,,) for 
essentially all values of a tested; he does not give values for rmb. Our program could 
not reproduce the efficiency of 0.423 given by Thorne for a = 1, but we find an 
efficiency of 0.421 for a = 0.999 999 99, an agreement we consider satisfactory. Values 
of a = 0.9978 and 0.9982 correspond to the ‘canonical’ spin-up limits for a black hole 
where isotropic emission or an electron-scattering atmosphere are respectively 
assumed (Thorne 1974), and yield efficiencies of -0.32. While this limit of a = 0.998 
is valid for thin discs, Abramowicz and Lasota (1980) have shown that for a thick 
disc with an inner boundary approaching rmb this value can be exceeded, although 
a = 1 is forbidden by the third law of black hole thermodynamics. However, we 
expect that the decrease in efficiency caused by this shrinkage of the inner edge will 
more than offset the increase due to the allowed rise in angular momentum, although 
detailed calculations would have to be performed to verify this conjecture. 

Our numerical results are summarised in tables 1-5 and figures 1-3. The tables 
present results for rmb, r,,, IK(rms) =I,, and b,, for five values of a and various values 
of A .  For fixed values of a cO.9999 we note that rmb and rms decrease smoothly as 
A increases, while I,, suffers a small decrease before again rising. The minimum in 
l,, is usually achieved for A - lo-’. 
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Table 1. Accretion parameters as functions of A for a = 0.1. 

A rmh 

0 3.797 366 30 
3.797 353 79 
3.796 070 49 

lo-’ 3.683 038 56 
lo-’ 3.194 622 73 
0.2 2.968 382 95 
1.0 2.478 607 88 
2.0 2.303 275 41 
3.0 2.220 616 47 
5.0 2.140 965 06 

10.0 2.070 985 11 
15.0 2.046 826 65 

rms I m r I P  

5.669 302 48 3.367 110 
5.669 302 48 3.367 105 
5.669 299 10 3.366 575 
5.635 586 93 3.320 367 
4.536 380 53 3.260 053 
3.868 558 00 3.405 428 
2.687 908 89 5.601 304 
2.399 384 30 7.008 664 
2.281 698 57 8.099 709 
2.175 753 35 12.953 676 
2.087 477 81 22.822 266 
2.056 201 06 32.693 667 

b m s l F C 2  

0.060 634 45 
0.060 635 94 
0.060 783 68 
0.074 720 22 
0.154 147 90 
0.203 565 42 
0.352 916 49 
0.403 783 25 
0.413 383 58 
0.385 369 49 
0.222 533 53 
0.016 572 03 

Table 2. Accretion parameters as functions of A for a = 0.5. 

A rmb rm. lmslf i  b m s l w c ’  

0 

io-’ 
0.25 
0.4 
0.455 
0.55 
1 .o 
1.1 
2.0 
2.5 

2.914 2135 
2.914 2091 
2.909 9964 
2.473 4462 
2.372 8849 
2.345 3033 
2.305 1457 
2.186 2783 
2.169 1554 
2.1104549 
2.078 5249 

4.233 002 6 
4.233 002 6 
4.232 908 3 
3.141 205 25 
2.844 422 0 
2.769 208 25 
2.664 447 2 
2.384 784 68 
2.347 454 41 
2.156 214 48 
2.102 202 18 

2.902 866 
2.902 863 
2.900 010 
2.935 259 
3.131 335 
3.209 209 
3.347 754 
4.035 618 
4.191 824 
5.617 347 
6.417 821 

0.082 117 99 
0.082 118 90 
0.083 024 66 
0.171 815 51 
0.181 192 51 
0.181 747 18 
0.180 238 71 
0.147 650 96 
0.136 851 09 
0.011 196 34 

-0.071 657 99 

Table 3. Accretion parameters as functions of A for a = 0.9978. 

A rmh rms l m s l f i  b m s l f i C 2  

0 

1 0 - ~  
lo-’ 
lo-’ 
0.2 
0.3 
0.5 
1.0 
2.0 
3.5 
7.0 

1.096 0084 
1.096 0084 
1.096 0081 
1.095 9820 
1.095 7485 
1.095 4971 
1.095 2541 
1.094 7915 
1.093 7609 
1.092 1629 
1.090 7521 
1.093 9376 

1.245 923 00 
1.245 923 00 
1.245 923 00 
1.245 914 75 
1.245 105 14 
1.242 748 38 
1.239 122 19 
1.229 478 42 
1.203 109 05 
1.166063 91 
1.137 072 33 
1.108 684 34 

1.399 685 
1.399 685 
1.399 683 
1.399 420 
1.397 732 
1.397 280 
1.398217 
1.403 666 
1.431 530 
1.514 575 
1.659 977 
2.020 329 

0.318 148 50 
0.318 148 51 
0.318 149 83 
0.318 277 93 
0.319 133 54 
0.319 452 92 
0.319 155 68 
0.316 967 18 
0.305 053 54 
0.268 416 26 
0.202 986 04 
0.038 315 78 

Perhaps the most interesting result concerns the binding energy at rms, which 
corresponds to the efficiency of mass to energy conversion (neglecting swallowing of 
radiation by the black hole) for a thin accretion disc or for test particles. For fixed 
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Table 4. Accretion parameters as functions of A for a = 0.9999. 

A 

0 

2.0 
7 .O 

10.0 
15.0 
20.0 
25.0 
35.0 
40.0 

1 0 - ~  

lrnb 

1.021 4154 
1.021 4154 
1.019 9058 
1.019 5265 
1.019 3608 
1.019 1783 
1.019 1168 
1.019 2087 
1.020 8001 
1.021 1727 

I,, 

1.078 526 45 
1.078 526 45 
1.063 655 19 
1.041 103 11 
1.035 649 74 
1.030417 23 
1.027 315 32 
1.025 233 86 
1.022 583 03 
1.021 579 68 

l m s l p  

1.240 584 
1.240 584 
1.258 645 
1.362 394 
1.429 979 
1.543 612 
1.657 309 
1.770 840 
1.997 5 5 5  
2.110877 

0.382 041 53 
0.382 041 68 
0.373 424 05 
0.323 128 50 
0.290 169 50 
0.234 607 39 
0.178 906 99 
0.123 221 20 
0.118 931 22 

-0.043 795 86 

Table 5. Accretion parameters as functions of A for a = 0.999 999 99. 

A l m b  rms lmsl/-l b m s l W 2  

0 >1.000 2 t  1.003 432 21 1.158 651 0.420 679 44 
1 0 - ~  >1.000 2 t  1.003 430 21 1.158 651 0.420 679 45 
0.2 >1.000 2 t  1.003 42968 1.158 651 0.420 679 72 
0.9 >1.0002t 1.003 419 56 1.158 658 0.420 675 90 

50.0 >1.0002t 1.001 455 25 1.169415 0.415 303 32 
500.0 1.000 1958 1.000489 17 1.282 368 0.358 850 43 

1000.0 1.000 1930 1.000 360 37 1.402 340 0.298 888 01 
2000.0 1.000 1907 1.000 273 38 1.635 266 0.182 442 05 
5000.0 1.000 1673 1.000 203 05 2.319 387 -0.159 558  40 

f Numerical difficulties prevented accurate determination of these values. 

values of a > 0 we find that the efficiency rises with A, but only until A - 1 ;  as the 
combined strength of the field and charge continues to increase b,, falls off to values 
below that for A = 0. This behaviour is illustrated in figure 1 where we plot b,, against 
log A for the five cases shown in the tables as well as the result for a = 0 taken from 
DW. Both the absolute and relative increases in b,, drop as a rises, for if we define 

we find that Sb(O)= 17.485, Sb(0.1)-6.818, Sb(0.5)=2.213, Sb(0.9978)- 1.004 and 
Sb(0.99999999)= 1.0000007. As a matter of fact, for sufficiently large A ,  no 
Keplerian orbits can be found for a given a, as the magnetic fields yield negative 
binding energies at all radii. Similar results were found by PV in their analysis of test 
particle orbits with fixed A ,  1 and a. Physically, this situation corresponds to powerful 
electromagnetic potentials preventing any stable orbits from existing. As this cut-off 
value of A is always greater than 1 and rises both for a + 0 and a + 1 ,  we see that 
this does not severely affect the plasma accretion case (A < l ) ,  but does limit the test 
particle case. 

Figure 2 shows the effective potential plotted against radius for several values of 
a and A. For A << 1 ,  V drops below 1 and then remains less than 1 until large p, 
implying that Keplerian orbits are viable over a wide range in radius. As A increases, 
the radial range for which V < 1 drops significantly, implying that the outer edge of 
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l o  i + 
0.6 1 

log A 

Figure 1. Efficiency of mass to energy conversion at the last stable orbit (bmJ plotted 
against the logarithm of the product of magnetic field strength and charge ( A )  for different 
values of the angular momentum parameter (a). 

4 0  

3.0 

2 0  
V 

1 0  

0 8  

t 
0 5  

1 2 4 6 8 1 0  20 
P 

Figure 2. Effective potential, V, against dimensionless radius, p, plo~ted on a log-log scale 
for four sets of values of a and A. The full curve corresponds to a = 0.5, A = 0.445; the 
broken curve to a = 0.9978, A = 2.0; the chain curve to a = 0.998, A = 3.5; and double 
chain curve to a = 0.5, A = Note that a disc only exists for V < 1 so that for large 
A stable orbits cover a very limited range in radius. 
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100 
80 

60 

40 

20 

I - 10 
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2 

1 
2 4 6 8 1 0  20 

P 

Figure 3. The specific Keplerian angular momentum, lK, against p for six sets of values 
of a and A, including the four cases shown in figure 2, where the types of curves 
corresponding to the different parameters are defined. The additional curves are: dotted, 
a = 0.9978, A = and short broken, a = 0.9978, A = 7. 

the disc must become very close to the inner edge. This range becomes extremely 
narrow (as is evident for a = 0.9978 and A = 3.5) and eventually vanishes when no 
Keplerian orbits can exist. Figure 3 shows how the Keplerian angular momentum 
reaches a minimum at rms and then rises with radius for the cases shown in figure 2 
(plus two others). 

5. Conclusions 

We have shown that in the Kerr geometry magnetic fields are unlikely to have 
significant influence upon the efficiency of astrophysically interesting accretion pro- 
cesses, where A << 1. This result for accretion discs is basically a broadening of the 
conclusion reached by DW for the Ernst metric. But unique results arise in the test 
particle situation, A b 1. When the black hole is rotating, the efficiency does not 
continue to rise with A beyond a certain point; rather a maximum efficiency, corres- 
ponding to a rather narrow ring of material, is reached. In the plasma accretion case, 
the decrease in rmb is never sufficient to imply significantly narrower funnels. 

Although we believe these negative results are quite strong, we must reiterate 
some of the simplifying assumptions that have been made in our calculations. We 
have specialised to the equatorial plane for a magnetic field aligned with the black 
hole’s rotation axis; other configurations could conceivably alter the picture dramati- 
cally. However, they would be much more difficult to calculate, and we do not rate 
this as much of a problem. Our assumption of a uniform magnetic field is certainly 
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too simple, and the actual field will be more complex; probably the field will be most 
intense in the innermost regions of the disc as it is amplified by shear in the accreting 
material (Bisnovatyi-Kogan 1979). But as the limits were derived on the maximum 
field strength, this should not change our conclusions about the values of rmb, rms or 
b,, very much. If we allowed for a decrease in field strength with radius (e.g. a dipole 
type field) then we expect that V would rise more slowly with distance and decent 
orbits could exist over larger intervals; equivalently, the cut-off value of ‘ A ’  could 
rise. With a sufficiently rapidly decreasing magnetic field we expect V, to be finite 
and we could return to the standard definition of the binding energy as b = V,- V. 
This would certainly be more physically exact, and we plan to pursue this route in 
future work, The fact that the inner parts of thick discs will have non-Keplerian 
angular momentum distributions will not change the maximum efficiency (DW). the 
neglect of the radiation emitted by the infalling material, particularly in the test particle 
case, is probably the biggest source of error in our treatment, and is the most likely 
way in which the limits we. have found could be exceeded. But again, for hydrodynamic 
accretion discs we anticipate this correction to be small. Although radically different 
pictures allow magnetic fields to play a dominant role (e.g. Blandford 1979 and 
references therein), we have shown that many straightforward effects of magnetism 
on accretion are quite small. 
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